
Module 1: Introduction to RF and High-Frequency 
Concepts 

This module serves as a critical foundation for understanding the distinct 
characteristics and complexities of Radio Frequency (RF) circuits and 
systems. We will embark on a journey from the very definition of the RF 
domain and its ubiquitous applications, delve into how familiar electronic 
components behave unexpectedly at high frequencies, and introduce the 
specialized mathematical tools essential for RF circuit analysis. 

1.1 What is RF? 

Introduction to the RF spectrum and its applications: 

Radio Frequency (RF) refers to alternating current (AC) electrical signals or 
electromagnetic waves that occupy a specific portion of the electromagnetic 
spectrum, generally ranging from approximately 3 kilohertz (kHz) to 300 
gigahertz (GHz). This vast range encompasses a multitude of frequencies, 
each with unique propagation characteristics and applications. Unlike direct 
current (DC) signals, which flow in one direction, or low-frequency AC signals 
(like the 50/60 Hz power from a wall outlet), RF signals involve rapidly 
oscillating electric and magnetic fields that can propagate through space as 
waves. This wave-like behavior is what enables wireless communication and 
sensing. 

The significance of RF lies in its ability to carry information wirelessly over 
short or long distances, through various media including air, vacuum, and 
even some non-conductive materials. This capability has revolutionized how 
we communicate, navigate, and sense our environment. 

Let's explore some key application areas in more detail: 

● Wireless Communication: This is arguably the most pervasive 
application of RF. 

○ Mobile Telephony (Cellular Networks): Your smartphone relies 
heavily on RF. Different generations of cellular technology (GSM, 
3G, 4G LTE, 5G) operate on various allocated frequency bands to 
carry voice, text, and high-speed data. For example, in India, 4G 
LTE uses bands like 850 MHz, 1800 MHz, and 2300 MHz, while 5G 
is beginning to utilize sub-6 GHz bands (like 3.3-3.6 GHz) and even 
higher millimeter-wave (mmWave) bands (like 26 GHz) for 
ultra-fast, short-range connections. 



○ Wi-Fi (Wireless Local Area Networks): This technology enables 
internet connectivity within homes, offices, and public spaces. 
The most common bands are 2.4 GHz (e.g., 802.11b/g/n) and 5 
GHz (e.g., 802.11a/n/ac/ax). The 2.4 GHz band is more susceptible 
to interference due to its widespread use (Bluetooth, microwaves) 
but offers better range, while the 5 GHz band provides higher data 
rates and less interference but with shorter range. 

○ Bluetooth: A short-range wireless technology operating in the 2.4 
GHz Industrial, Scientific, and Medical (ISM) band, commonly 
used for connecting headphones, speakers, and other peripherals 
to smartphones or computers. Its low power consumption makes 
it ideal for battery-operated devices. 

○ Satellite Communication: Used for global communication, 
television broadcasting, and internet services in remote areas. 
Satellites transmit and receive signals at very high frequencies, 
such as C-band (4-8 GHz), Ku-band (12-18 GHz), and Ka-band 
(26.5-40 GHz). Higher frequencies allow for greater data capacity 
and smaller antenna sizes, but they are also more susceptible to 
atmospheric attenuation (like rain fade). 

○ Broadcast Radio and Television: Traditional AM (Amplitude 
Modulation) radio operates in the kilohertz to low megahertz 
range (e.g., 530 kHz to 1.7 MHz), while FM (Frequency Modulation) 
radio uses the very high frequency (VHF) band (e.g., 88-108 MHz). 
Digital television broadcasting also uses specific UHF (Ultra High 
Frequency) bands (e.g., 470-698 MHz in some regions). 

● Radar (Radio Detection and Ranging): Radar systems emit RF waves 
and analyze the reflections (echoes) from objects to determine their 
presence, distance, speed, and angular position. Applications range 
from air traffic control (e.g., L-band, S-band), weather forecasting (e.g., 
C-band, X-band), maritime navigation, automotive safety (e.g., 24 GHz, 
77 GHz for collision avoidance), to military and scientific research. The 
choice of frequency depends on factors like required resolution, range, 
and atmospheric conditions. 

● Navigation Systems: The Global Positioning System (GPS) is a prime 
example. GPS receivers on Earth receive continuous RF signals (at 
L-band frequencies, approximately 1.2 GHz to 1.6 GHz) from a 
constellation of satellites orbiting the Earth. By precisely measuring the 
time difference of arrival of signals from multiple satellites, the receiver 
can triangulate its exact position. 

● Medical Applications: RF energy is utilized in various medical 
procedures. Magnetic Resonance Imaging (MRI) machines use powerful 
magnetic fields and RF pulses to create detailed images of soft tissues 
and organs inside the body. Diathermy uses RF energy to generate 



therapeutic heat within body tissues to alleviate pain or promote 
healing. 

● Industrial Applications: RF heating is used in industrial processes for 
drying, curing, and welding materials. Radio-Frequency Identification 
(RFID) systems, operating at various frequencies (e.g., 125 kHz, 13.56 
MHz, 860-960 MHz), are used for tracking inventory, access control, and 
supply chain management. 

● Remote Control: Simple RF systems are found in everyday items like 
garage door openers, car key fobs, and drone controllers, using various 
low-power RF links. 

Differences between low-frequency and high-frequency circuit behavior: 

The fundamental principles of circuit analysis, such as Ohm's Law and 
Kirchhoff's Laws, remain valid at all frequencies. However, their practical 
application and the physical interpretation of circuit elements drastically 
change as frequency increases. 

At low frequencies (typically below a few hundred kilohertz, or even a few 
megahertz for very small circuits), we can largely ignore the physical 
dimensions of components and interconnections. Circuit elements are treated 
as "lumped," meaning their electrical properties (resistance, capacitance, 
inductance) are concentrated at a single point. Signal propagation delays 
across the circuit are negligible because the wavelength of the signal is much 
larger than the circuit's physical size. In this regime, we can easily apply 
Kirchhoff's Voltage Law (KVL) and Kirchhoff's Current Law (KCL) assuming 
instantaneous changes in voltage and current throughout the circuit. 

At high frequencies (RF and microwave frequencies), these simplifying 
assumptions no longer hold true. The behavior of circuits becomes profoundly 
different due to several critical effects: 

● Wavelength becomes comparable to circuit dimensions: This is the 
most fundamental shift. When a circuit's physical dimensions (e.g., the 
length of a connecting wire or a component's lead) become a significant 
fraction of the signal's wavelength (e.g., greater than 1/10th or 1/20th of 
a wavelength), the signal can no longer be considered uniform across 
the component or connection. Instead, the signal propagates as a wave, 
exhibiting phase shifts and time delays along its path. This necessitates 
the use of transmission line theory, where interconnections are no 
longer ideal "wires" but complex structures with characteristic 
impedances that must be matched. 

● Parasitic effects become significant: Every physical component, 
regardless of its intended function, inherently possesses unintended or 
"parasitic" inductance, capacitance, and resistance. 



○ A resistor, in addition to its resistance, has parasitic series 
inductance due to its leads and body, and parasitic shunt 
capacitance between its terminals. 

○ A capacitor has parasitic series inductance from its leads and 
plates, and series resistance due to the material losses. 

○ An inductor has parasitic series resistance from the wire and 
significant parasitic shunt capacitance between its turns. At low 
frequencies, these parasitic effects are negligible. At RF, they can 
completely dominate a component's behavior, leading to 
unexpected resonant frequencies where a capacitor might act as 
an inductor, or vice versa. 

● Radiation effects are non-negligible: Any conductor carrying an 
alternating current can act as an antenna. At low frequencies, the 
amount of energy radiated is usually tiny and ignored. However, at RF, 
especially when conductor lengths approach a significant fraction of a 
wavelength, wires and traces on a circuit board can efficiently radiate 
electromagnetic energy into space. This leads to power loss, signal 
degradation, and electromagnetic interference (EMI) with other circuits 
or systems. Conversely, properly designed antennas are precisely 
engineered to maximize this radiation for wireless communication. 

● Skin effect: Current in AC circuits tends to flow only near the surface of 
a conductor rather than uniformly through its entire cross-section. This 
"skin effect" becomes more pronounced as frequency increases, 
effectively reducing the cross-sectional area available for current flow 
and thereby increasing the effective resistance of the conductor. This 
leads to higher power losses and impacts the quality factor (Q-factor) of 
inductors and resonators. 

● Dielectric losses: Insulating materials (dielectrics) used in capacitors or 
as substrates for printed circuit boards (PCBs) are not perfect insulators 
at high frequencies. They absorb some energy from the electric field, 
converting it into heat. This loss, characterized by the "loss tangent" of 
the material, becomes more significant at higher frequencies and can 
degrade circuit performance. 

Wavelength, frequency, and propagation speed: 

These are three fundamental, interconnected parameters that describe any 
propagating wave, including electromagnetic waves at RF. 

● Frequency (f): This is the most intuitive measure. It represents the 
number of complete cycles (oscillations) of the wave that pass a given 
point in one second. The unit for frequency is Hertz (Hz), where 1 Hz 
means one cycle per second. Higher frequencies mean more 
oscillations per second. 



● Wavelength (λ): This is the spatial characteristic of a wave. It is the 
physical distance over which one complete cycle of the wave extends. 
Think of it as the distance between two consecutive peaks or troughs of 
the wave. The unit for wavelength is meters (m). 

● Propagation Speed (v): This is the speed at which the wave travels 
through a particular medium. For electromagnetic waves in a vacuum 
(or approximately in air), the propagation speed is the speed of light, 
denoted by 'c', which is approximately 3×108 meters per second (m/s). In 
other materials (like a PCB substrate or a coaxial cable dielectric), the 
wave travels slower, and its speed is related to the material's dielectric 
constant. 

The relationship between these three quantities is fundamental and universal 
for all wave phenomena: 

v=f×λ 

This equation tells us that for a given propagation speed, higher frequencies 
correspond to shorter wavelengths, and lower frequencies correspond to 
longer wavelengths. 

In free space (vacuum) or air, the equation becomes: 

c=f×λ 

We can rearrange this formula to find any of the variables if the other two are 
known: 

λ=c/f (to find wavelength from frequency) f=c/λ (to find frequency from 
wavelength) 

Numerical Example 1.1.1: Wavelength and Frequency Relationship 

Let's calculate the wavelength for a few common RF applications to appreciate 
the scales involved: 

Example 1.1.1a: FM Radio A popular FM radio station broadcasts at 98.1 MHz. 
What is the wavelength of this signal in free space? 

Given: Frequency f=98.1 MHz=98.1×106 Hz Speed of light c=3×108 m/s 

Calculation: λ=c/f λ=(3×108 m/s)/(98.1×106 Hz) λ≈3.058 m 

Interpretation: The wavelength is approximately 3 meters. This is why 
traditional FM radio antennas are often around a meter or two long, designed 
to be a fraction of this wavelength for efficient reception. 



Example 1.1.1b: 5G Millimeter-Wave A future 5G millimeter-wave band is 
centered around 28 GHz. What is its wavelength in free space? 

Given: Frequency f=28 GHz=28×109 Hz Speed of light c=3×108 m/s 

Calculation: λ=c/f λ=(3×108 m/s)/(28×109 Hz) λ≈0.0107 m=1.07 cm 

Interpretation: The wavelength is just over 1 centimeter. This explains why 5G 
mmWave systems can use very small antennas, but also why their signals are 
easily blocked by obstacles (since the obstacles are much larger than the 
wavelength) and have limited range. This short wavelength also means that 
even short circuit traces on a chip or PCB must be treated as transmission 
lines. 

Example 1.1.1c: Radar System A police speed gun operates at X-band, with a 
frequency of 10.525 GHz. What is its wavelength? 

Given: Frequency f=10.525 GHz=10.525×109 Hz Speed of light c=3×108 m/s 

Calculation: λ=c/f λ=(3×108 m/s)/(10.525×109 Hz) λ≈0.0285 m=2.85 cm 

Interpretation: The wavelength is about 2.85 cm. This allows radar systems to 
achieve good resolution for detecting objects. 

1.2 High-Frequency Effects in Components 

At RF, the simple, ideal models of resistors, capacitors, and inductors that are 
adequate at low frequencies no longer hold. The physical structure of these 
components introduces parasitic elements that become dominant at higher 
frequencies, drastically altering their behavior. 

Parasitic effects of resistors, capacitors, and inductors at RF: 

Let's look at how each component deviates from its ideal behavior: 

● Resistors: An ideal resistor has only pure resistance. However, a 
real-world resistor, due to its physical construction, always has: 

○ Parasitic Series Inductance (Lp): Arising from the current path 
through the resistive material and, more significantly, from the 
lead wires connecting the resistor to the circuit. Any current path 
forms a loop, creating inductance. 

○ Parasitic Shunt Capacitance (Cp): Formed between the resistor's 
terminals, across its body, and between adjacent turns (in 
wire-wound resistors). 

○ Simplified Model of a Real Resistor: Imagine a very short wire 
connected to a resistor. That wire has inductance. Now imagine 



the two ends of the resistor are like parallel plates separated by 
air (or the resistor body material). That forms a capacitor. At low 
frequencies, the resistor's actual resistance (Rideal ) is the 
dominant factor. As frequency increases: The impedance due to 
parasitic inductance (jωLp ) becomes more significant, causing 
the overall impedance to rise and become inductive. At even 
higher frequencies, the impedance due to parasitic shunt 
capacitance (1/(jωCp )) starts to bypass the resistor. This 
capacitance forms a parallel resonant circuit with the series 
inductance. At the self-resonant frequency (SRF), the inductive 
and capacitive reactances cancel, and the resistor's impedance 
becomes purely resistive but often much lower than its nominal 
value. Above the SRF, the resistor behaves predominantly 
capacitively. This means a 100 Ohm resistor might act like an 
inductor at 1 GHz or a capacitor at 5 GHz, completely defeating its 
purpose! 

● Capacitors: An ideal capacitor provides infinite DC resistance and 
decreases its impedance linearly with increasing frequency. Real 
capacitors, however, have: 

○ Parasitic Series Inductance (Lp): Primarily from the capacitor 
leads and internal plate connections. This is the most critical 
parasitic for RF capacitors. 

○ Equivalent Series Resistance (ESR or Rs): Arising from the 
resistance of the leads, the plates, and dielectric losses within the 
insulating material. This dissipates energy. 

○ Parasitic Shunt Leakage Resistance (Rp): A very high resistance 
representing the dielectric's non-infinite insulation. Usually 
negligible at RF unless the dielectric material is very lossy. 

○ Simplified Model of a Real Capacitor: Imagine a capacitor with 
wires connected to it. Those wires have inductance and 
resistance. At low frequencies, the capacitor's actual capacitance 
(Cideal ) is the dominant factor, and its impedance (1/(jωCideal )) is 
high and capacitive. As frequency increases, the parasitic series 
inductance (Lp ) becomes increasingly relevant. The total 
impedance starts to include an inductive component. The 
capacitor will exhibit a self-resonant frequency (SRF) where its 
capacitive reactance cancels out its parasitic series inductive 
reactance (1/(ωCideal )=ωLp ). At this specific frequency, the 
capacitor effectively acts as a pure resistor (equal to its ESR), and 
its impedance is at a minimum. This is a crucial point for bypass 
capacitors; you want the SRF to be near the frequency you want 
to bypass. Above its SRF, the capacitor behaves inductively. This 
is a common issue where a bypass capacitor designed for a 



certain frequency range becomes an inductor at higher 
frequencies, failing to bypass high-frequency noise. 

● Inductors: An ideal inductor has zero DC resistance and its impedance 
increases linearly with frequency. Real inductors, however, have: 

○ Parasitic Series Resistance (Rs): Due to the finite resistance of 
the wire used to form the coil (skin effect also contributes here). 

○ Parasitic Shunt Capacitance (Cp): Formed between adjacent turns 
of the coil and between the coil and ground (or other nearby 
conductors). This is the most significant parasitic for RF 
inductors. 

○ Simplified Model of a Real Inductor: Imagine the turns of a coil as 
tiny parallel plates separated by air. This creates capacitance. At 
low frequencies, the inductor's actual inductance (Lideal ) is the 
dominant factor, and its impedance (jωLideal ) is inductive. As 
frequency increases, the parasitic shunt capacitance (Cp ) 
becomes more significant, providing a parallel path for current 
flow. The inductor will reach a self-resonant frequency (SRF) 
where its inductive reactance cancels out its parasitic shunt 
capacitive reactance (ωLideal =1/(ωCp )). At this frequency, the 
inductor effectively acts as a high-value parallel resonant circuit, 
exhibiting very high impedance (ideally infinite, limited by parallel 
resistance). Above its SRF, the inductor behaves capacitively. This 
is a common issue in RF chokes (inductors used to block RF 
signals) where they might fail to block higher frequencies due to 
this capacitive behavior. 

Numerical Example 1.2.1: Capacitor SRF Calculation 

A 100 nF ceramic capacitor has a parasitic series inductance (Lp) of 5 nH. 
Calculate its self-resonant frequency (SRF). 

Given: C=100 nF=100×10−9 F Lp =5 nH=5×10−9 H 

The SRF occurs when the capacitive reactance equals the inductive reactance: 
1/(ωSRF C)=ωSRF Lp  

Rearrange to solve for ωSRF : ωSRF2 =1/(Lp C) ωSRF =1/Lp C   

Now, calculate fSRF : fSRF =ωSRF /(2π)=1/(2πLp C  ) 



fSRF =1/(2π(5×10−9 H)×(100×10−9 F)  ) fSRF =1/(2π500×10−18  ) 

fSRF =1/(2π×500  ×10−9) fSRF =1/(2π×22.36×10−9) 
fSRF =1/(140.48×10−9) fSRF ≈7.118×106 Hz=7.118 MHz 

Interpretation: This 100 nF capacitor is effective for bypassing frequencies up 
to about 7 MHz. Above this frequency, it will behave like an inductor, which is 
often undesirable for its intended filtering or bypass function. This highlights 
why multiple parallel capacitors of different values are sometimes used for 
broadband bypassing: smaller capacitors have higher SRFs and cover higher 
frequency ranges. 

Skin effect and proximity effect: 

These phenomena are critical for understanding resistance and current 
distribution in conductors at high frequencies. 

● Skin Effect: At DC, current flows uniformly throughout the entire 
cross-section of a conductor. However, when an AC current flows 
through a conductor, especially at higher frequencies, the current tends 
to concentrate near the surface of the conductor. This phenomenon is 
called the skin effect. 

○ Mechanism: A changing current in a conductor creates a 
changing magnetic field. This changing magnetic field induces 
eddy currents within the conductor itself. The eddy currents in the 
center of the conductor oppose the main current flow more 
effectively than those near the surface. Consequently, the net 
current density is higher near the surface and decreases 
exponentially towards the center. 

○ Skin Depth (δ): This is a quantitative measure of the skin effect. It 
is defined as the depth below the surface of the conductor at 
which the current density has fallen to approximately 37% (or 1/e) 
of its value at the surface. 

○ The formula for skin depth in a non-magnetic conductor is: 

δ=2/(2πfμσ)   where: f is the frequency in Hertz (Hz) 
μ=μ0 μr  is the magnetic permeability of the conductor. For 
non-magnetic materials like copper or aluminum, μr  (relative 
permeability) is approximately 1, so μ=μ0 =4π×10−7 Henries per 



meter (H/m), the permeability of free space. σ is the electrical 
conductivity of the conductor in Siemens per meter (S/m). 
(Conductivity is the reciprocal of resistivity). 

○ Consequences: Because current is confined to a smaller effective 
cross-sectional area, the effective AC resistance of the conductor 
increases significantly compared to its DC resistance. This leads 
to: 

■ Increased power loss (I^2*R losses). 
■ Reduced quality factor (Q-factor) of inductors and 

resonators. 
■ Need for specialized conductor geometries like Litz wire 

(multiple insulated strands braided together) to reduce skin 
effect losses at moderate RF frequencies. 

● Proximity Effect: This effect occurs when two or more conductors 
carrying AC current are placed in close proximity to each other. The 
magnetic field from one conductor induces eddy currents in the 
adjacent conductors. These induced eddy currents cause the current in 
each conductor to redistribute unevenly, typically forcing the current to 
flow predominantly on the sides of the conductors that are farthest from 
each other. 

○ Mechanism: Imagine two parallel wires carrying current in the 
same direction. The magnetic field lines between them push the 
current to the outer edges of each wire. If the currents are flowing 
in opposite directions, the fields between them attract the current, 
pushing it to the inner edges. 

○ Consequences: Similar to the skin effect, the proximity effect 
further increases the effective AC resistance of conductors. This 
is particularly problematic in tightly wound coils (inductors) and 
parallel traces on printed circuit boards (PCBs), leading to even 
higher losses than predicted by skin effect alone. Careful routing 
of traces and spacing is necessary in RF PCB design to mitigate 
this. 

Numerical Example 1.2.2: Skin Depth Calculation (Detailed) 

Calculate the skin depth for copper at different frequencies: 50 Hz (power 
frequency), 1 MHz (AM radio), and 10 GHz (microwave). Given: Conductivity of 
copper (σ) = 5.8×107 Siemens/meter (S/m) Permeability of free space (μ0 ) = 
4π×10−7 H/m (since copper is non-magnetic, μ=μ0 ) 

Formula: δ=2/(2πfμσ)   



a) At 50 Hz (Power Frequency): f=50 Hz δ=2/(2π×50×4π×10−7×5.8×107)

  δ=2/(2×π2×50×5.8)   δ=2/(5728.8)   δ≈0.000349

  δ≈0.01868 m=18.68 mm (approx. 1.8 cm) 

Interpretation: At 50 Hz, the skin depth is nearly 2 centimeters. This means 
current distribution is almost uniform across typical household wires (which 
are usually a few millimeters in diameter). Skin effect is negligible at power 
frequencies for common wire sizes. 

b) At 1 MHz (AM Radio Frequency): f=1 MHz=1×106 Hz 

δ=2/(2π×1×106×4π×10−7×5.8×107)   δ=2/(2×π2×106×5.8)   

δ=2/(114.59×106)   δ=1.745×10−8   δ≈0.000132 m=132 
micrometers 

Interpretation: At 1 MHz, the skin depth is about 132 micrometers (0.132 mm). 
This is already quite small. For wires thicker than this, the current will be 
significantly concentrated near the surface. 

c) At 10 GHz (Microwave Frequency): f=10 GHz=10×109 Hz 

δ=2/(2π×10×109×4π×10−7×5.8×107)   δ=2/(2×π2×10×109×5.8)   

δ=2/(114.59×109)   δ=1.745×10−11   δ≈0.00000417 m=4.17 
micrometers 

Interpretation: At 10 GHz, the skin depth is extremely shallow, only about 4 
micrometers. This means that at microwave frequencies, virtually all current 
flows in a very thin layer on the surface of the conductor. This is why gold 
plating is often used on RF traces – even though gold is not as good a 
conductor as copper, its non-oxidizing nature ensures a consistent, low-loss 
surface. Also, for power delivery, larger diameter conductors are often chosen 
not for their bulk, but for their increased surface area. 



Distributed vs. Lumped elements: 

This distinction is fundamental to how we conceptualize, model, and analyze 
circuits at different frequencies. 

● Lumped Elements: In lumped element analysis, we assume that the 
physical size of a component or a circuit interconnection is negligible 
compared to the wavelength of the signal it carries. This means that 
electrical effects (voltage, current) are considered to occur 
instantaneously throughout the component, and phase changes across 
the component are ignored. 

○ Conditions for Lumped Approximation: A common rule of thumb 
is that a circuit element can be treated as lumped if its largest 
physical dimension (Lmax ) is less than approximately one-tenth 
to one-twentieth of the signal's wavelength (λ). Lmax <λ/10 to λ/20 

○ Advantages: This simplifies circuit analysis significantly, allowing 
us to use standard Kirchhoff's Laws and basic component models 
(R, L, C). 

○ Examples: Most circuits operating at audio frequencies or low RF 
frequencies (e.g., 10 MHz) with small component sizes can be 
modeled using lumped elements. A typical resistor or capacitor 
used on a PCB at 10 MHz would easily satisfy this condition. 

● Distributed Elements: When the physical dimensions of a component or 
an interconnection become comparable to or larger than the signal's 
wavelength, the lumped element approximation breaks down. In this 
scenario, the voltage and current are no longer uniform along the length 
of the element, and significant phase shifts and propagation delays 
occur. The component's electrical properties are "distributed" along its 
length rather than being concentrated at a single point. 

○ Conditions for Distributed Analysis: When Lmax ≥λ/10 to λ/20. 
○ Consequences: Kirchhoff's Laws, in their simple form, are no 

longer directly applicable. We must resort to transmission line 
theory, which accounts for the wave propagation effects. These 
elements are characterized by parameters per unit length (e.g., 
resistance per meter, inductance per meter, capacitance per 
meter, conductance per meter). 

○ Examples: 
■ Transmission Lines: Coaxial cables, microstrip lines, 

striplines, and waveguides are classic examples of 
distributed elements. They are explicitly designed to guide 
electromagnetic waves over a distance, and their length is 
typically a significant fraction of a wavelength or many 
wavelengths. 



■ Long Interconnections: Even simple traces on a PCB, if 
sufficiently long at high frequencies, must be treated as 
transmission lines. For instance, a 10 cm trace used at 1 
GHz (where λ=30 cm) would be 10 cm/30 cm=1/3 of a 
wavelength, clearly requiring distributed analysis. 

○ Impact on Design: The shift from lumped to distributed analysis 
fundamentally changes how RF circuits are designed. Instead of 
simply placing components, designers must consider the 
geometry and material properties of every trace and connection, 
ensuring proper impedance matching to prevent reflections and 
maximize power transfer. 

Numerical Example 1.2.3: Lumped vs. Distributed Decision 

Consider a circuit operating at 500 MHz. We need to decide if a 5 cm long PCB 
trace can be treated as a lumped element. 

Given: Frequency f=500 MHz=500×106 Hz Length of trace Ltrace =5 cm=0.05 m 
Speed of light c=3×108 m/s 

1. Calculate the wavelength (λ): λ=c/f=(3×108 m/s)/(500×106 Hz)=0.6 m=60 
cm 

2. Calculate the tenth-wavelength threshold (λ/10): λ/10=60 cm/10=6 cm 
3. Compare trace length to threshold: Ltrace =5 cm λ/10=6 cm 

Since Ltrace  (5 cm) is less than λ/10 (6 cm), the trace might be approximated 
as a lumped element in some contexts. However, it's very close to the 
threshold. If strict signal integrity or very high accuracy is required, or if the 
frequency increases even slightly, it would be safer and more accurate to treat 
this 5 cm trace as a distributed element (transmission line). This example 
highlights that the "lumped" approximation is context-dependent and 
becomes increasingly fragile as frequencies rise. 

1.3 RF Circuit Representation 

To effectively analyze and design RF circuits, we need specialized 
mathematical tools that can handle the complex, wave-like nature of signals at 
high frequencies. 

Review of complex impedance and admittance: 

In DC circuits, we primarily deal with resistance, which is a real number. In AC 
circuits, especially at RF, we must account for the energy storage properties of 
inductors and capacitors, which introduce phase shifts between voltage and 
current. This requires the use of complex numbers to represent both 
impedance and admittance. 



● Impedance (Z): Impedance is the generalized concept of resistance in 
AC circuits. It quantifies the total opposition a circuit presents to the 
flow of alternating current. It is a complex number composed of a real 
part (resistance) and an imaginary part (reactance). Z=R+jX where: 

○ R is the Resistance (in Ohms, Ω): This is the real part of the 
impedance. It represents the component of the opposition that 
dissipates energy (converts electrical energy into heat). 

○ X is the Reactance (in Ohms, Ω): This is the imaginary part of the 
impedance. It represents the component of the opposition that 
stores and releases energy (in electric or magnetic fields) rather 
than dissipating it. 

■ Inductive Reactance (XL ): For an inductor with inductance 
L, XL =ωL, where ω=2πf is the angular frequency in radians 
per second. Inductive reactance is positive (jXL ), meaning 
current lags voltage. 

■ Capacitive Reactance (XC ): For a capacitor with 
capacitance C, XC =−1/(ωC). Capacitive reactance is 
negative (−jXC ), meaning current leads voltage. 

○ Magnitude and Phase of Impedance: Impedance can also be 
expressed in polar form, which provides its magnitude and phase 

angle: ∣Z∣=R2+X2   (magnitude, in Ohms) ϕZ =arctan(X/R) 
(phase angle, in degrees or radians) So, Z=∣Z∣∠ϕZ  

● Admittance (Y): Admittance is the reciprocal of impedance. It represents 
how easily current flows through an AC circuit. It is also a complex 
number, composed of a real part (conductance) and an imaginary part 
(susceptance). Y=G+jB where: 

○ G is the Conductance (in Siemens, S): This is the real part of the 
admittance. It is the reciprocal of resistance for purely resistive 
components (G=1/R). It represents the ease of current flow that 
leads to energy dissipation. 

○ B is the Susceptance (in Siemens, S): This is the imaginary part of 
the admittance. It is the reciprocal of reactance. 

■ Inductive Susceptance (BL ): For an inductor, BL =−1/(ωL). 
■ Capacitive Susceptance (BC ): For a capacitor, BC =ωC. 

○ Relationship between Z and Y: Y=1/Z=1/(R+jX) To convert from 
rectangular Z to rectangular Y: 
Y=(R−jX)/(R2+X2)=R/(R2+X2)−jX/(R2+X2) Therefore, G=R/(R2+X2) 
and B=−X/(R2+X2). 

Phasor representation: 



In AC circuit analysis, we often deal with sinusoidal voltages and currents. 
While we could use trigonometric functions in the time domain, this often 
leads to complex differential equations. Phasors simplify this. A phasor is a 
complex number that represents the magnitude and phase angle of a 
sinusoidally varying quantity (voltage or current). It allows us to convert 
time-domain differential equations into simpler algebraic equations in the 
frequency domain. 

A sinusoidal voltage v(t)=Vm cos(ωt+ϕ) can be represented by a phasor V: 

● Polar Form: V=Vm ∠ϕ (Magnitude Vm , Phase ϕ) 
● Rectangular Form: V=Vm cosϕ+jVm sinϕ 

Here, Vm  is the peak amplitude of the sinusoid, and ϕ is its phase angle 
relative to a reference (usually a cosine wave starting at zero). For practical 
calculations, RMS values are often used instead of peak values for magnitude. 

Rules for Phasor Arithmetic: 

● Multiplication/Division: When multiplying or dividing phasors (e.g., in 
Ohm's Law V=IZ), it's easiest to use polar form: 
(V1 ∠ϕ1 )×(V2 ∠ϕ2 )=(V1 V2 )∠(ϕ1 +ϕ2 ) 
(V1 ∠ϕ1 )/(V2 ∠ϕ2 )=(V1 /V2 )∠(ϕ1 −ϕ2 ) 

● Addition/Subtraction: When adding or subtracting phasors, it's easiest 
to use rectangular form: (R1 +jX1 )+(R2 +jX2 )=(R1 +R2 )+j(X1 +X2 ) 

Numerical Example 1.3.1: Complex Impedance and Phasor Current Calculation 

A voltage source given by v(t)=20cos(2π×5×107t−45∘) V is connected across a 
series combination of a resistor, an inductor, and a capacitor. The component 
values are R=25 Ohms, L=0.2 uH, and C=10 pF. Determine the total impedance 
of the circuit and the phasor representation of the current flowing through it. 

Given: Voltage source: Vm =20 V, ϕV =−45∘ Angular frequency: ω=2π×5×107 
rad/s Frequency f=50 MHz Components: R=25 Ohms, L=0.2 uH=0.2×10−6 H, 
C=10 pF=10×10−12 F 

1. Represent the voltage source as a phasor: V=20∠−45∘ V 
2. Calculate the inductive reactance (XL ): XL =ωL=(2π×5×107 

rad/s)×(0.2×10−6 H) XL =2π×5×0.2×10=2π×10=20π Ohms XL ≈62.83 Ohms 
So, ZL =j62.83 Ohms 

3. Calculate the capacitive reactance (XC ): XC =−1/(ωC)=−1/((2π×5×107 
rad/s)×(10×10−12 F)) XC =−1/(2π×5×10−4)=−1/(0.00314159) Ohms 
XC ≈−318.31 Ohms So, ZC =−j318.31 Ohms 

4. Calculate the total impedance (Z) of the series circuit: Z=R+ZL +ZC  
Z=25+j62.83−j318.31 Z=25−j255.48 Ohms 



5. Convert the total impedance Z to polar form for division: Magnitude 

∣Z∣=R2+X2  =252+(−255.48)2   ∣Z∣=625+65270.09

 =65895.09  ≈256.7 Ohms Phase angle 
ϕZ =arctan(X/R)=arctan(−255.48/25) ϕZ =arctan(−10.2192)≈−84.42∘ So, 
Z=256.7∠−84.42∘ Ohms 

6. Calculate the current phasor (I) using Ohm's Law (I = V/Z): I=(20∠−45∘ 
V)/(256.7∠−84.42∘ Ohms) Magnitude ∣I∣=20/256.7≈0.0779 A Phase angle 
ϕI =−45∘−(−84.42∘)=−45∘+84.42∘=39.42∘ So, I=0.0779∠39.42∘ A 

Interpretation: The current flowing through the circuit has a peak amplitude of 
approximately 77.9 milliamperes and leads the voltage by about 39.42 degrees. 
This indicates that the circuit is predominantly capacitive, as the current leads 
the voltage. 

Introduction to scattering parameters (S-parameters) – conceptual overview: 

While impedance (Z), admittance (Y), hybrid (H), and ABCD parameters are 
commonly used for analyzing low-frequency circuits, they present significant 
limitations when applied to RF and microwave circuits, especially at high 
frequencies and for multi-port networks. 

Limitations of Z, Y, H, ABCD Parameters at RF: 

1. Measurement Difficulty: These parameters are defined under specific 
terminal conditions: 

○ Z-parameters require open-circuit conditions (current at a port is 
zero). 

○ Y-parameters require short-circuit conditions (voltage at a port is 
zero). 

○ Creating ideal open or short circuits at RF across a broad range of 
frequencies is extremely difficult. A "short" wire at RF will have 
parasitic inductance, and an "open" will have parasitic 
capacitance. This makes accurate measurement challenging or 
impossible. 

○ Active devices (like transistors) may become unstable and 
oscillate under open or short circuit conditions, making their 
characterization impractical. 

2. Lack of Uniqueness/Reference Plane Dependence: The measured Z/Y 
parameters depend on the exact physical location of the "reference 
plane" where the measurements are taken. 



3. Frequency Dependence: Like all parameters, Z/Y/H/ABCD are 
frequency-dependent. 

4. Wave Propagation Neglect: These parameters fundamentally assume 
lumped circuit behavior, where voltage and current are well-defined at a 
single point. This ignores the wave propagation effects and reflections 
that are dominant at RF and microwave frequencies. 

S-parameters (Scattering Parameters): 

To overcome these limitations, S-parameters were introduced. Instead of total 
voltages and currents, S-parameters relate incident and reflected power waves 
at the ports of a network. This approach is much more practical at RF because: 

1. Controlled Terminations: S-parameters are defined with respect to a 
specific characteristic impedance (often 50 Ohms in RF systems). This 
means measurements are performed by terminating the ports with a 
known, matched impedance (usually 50 Ohms), which is much easier to 
achieve and maintain stability for active devices. 

2. Direct Measurement with VNAs: S-parameters are directly measurable 
using a Vector Network Analyzer (VNA), which sends an RF signal 
(incident wave) into one port and measures the transmitted and 
reflected waves at all ports. 

3. Wave-Based: They inherently account for wave propagation, reflections, 
and transmission within the network, making them ideal for distributed 
circuits. 

4. Intuitive Information: They directly provide information about reflections 
(how well a port is matched) and transmission (gain/loss between ports). 

Conceptual Definition of S-parameters: 

For any N-port network, there will be N incident waves (a1 ,a2 ,...,aN ) entering 
the ports and N reflected waves (b1 ,b2 ,...,bN ) leaving the ports. The 
relationship between these waves is defined by the S-matrix: 

[b]=[S][a] 

For a simple two-port network (the most common scenario for RF circuits like 
amplifiers, filters, and mixers), the relationships are: 

b1 =S11 a1 +S12 a2  b2 =S21 a1 +S22 a2  

Where: 

● a1 : Incident wave at Port 1 
● a2 : Incident wave at Port 2 
● b1 : Reflected wave from Port 1 



● b2 : Reflected wave from Port 2 

And the S-parameters (Sij ) are complex numbers: 

● S11  (Input Reflection Coefficient): S11 =b1 /a1  (when a2 =0, i.e., Port 2 is 
terminated with the characteristic impedance). 

○ Meaning: Represents how much of the incident power wave at the 
input port (Port 1) is reflected back. A smaller magnitude of S11  
(closer to 0) indicates a better match at the input. For a perfectly 
matched input, S11 =0. 

● S21  (Forward Transmission Coefficient or Forward Gain): S21 =b2 /a1  
(when a2 =0, i.e., Port 2 is terminated with the characteristic impedance). 

○ Meaning: Represents the transmission or gain from the input port 
(Port 1) to the output port (Port 2). For an amplifier, the magnitude 
squared ∣S21 ∣2 is the forward power gain. 

● S12  (Reverse Transmission Coefficient or Reverse Isolation): S12 =b1 /a2  
(when a1 =0, i.e., Port 1 is terminated with the characteristic impedance). 

○ Meaning: Represents the transmission or gain from the output 
port (Port 2) back to the input port (Port 1). For a well-designed 
amplifier, S12  should be very small, indicating good isolation 
(minimal signal leakage back to the input). A device is called 
"unilateral" if S12 =0. 

● S22  (Output Reflection Coefficient): S22 =b2 /a2  (when a1 =0, i.e., Port 1 is 
terminated with the characteristic impedance). 

○ Meaning: Represents how much of the incident power wave at the 
output port (Port 2) is reflected back. A smaller magnitude of S22  
(closer to 0) indicates a better match at the output. For a perfectly 
matched output, S22 =0. 

S-parameters are typically measured as a function of frequency. Designers use 
these S-parameters to analyze circuit performance (gain, matching, isolation, 
stability) and to design impedance matching networks. A more detailed 
treatment of S-parameters and their applications will be covered in a dedicated 
module. 

1.4 Review of Basic Circuit Theory for RF 

While RF presents unique challenges, many fundamental circuit theorems 
remain invaluable. We just need to apply them using complex impedances and 
phasors. 

Thévenin and Norton equivalents at RF: 

These theorems provide powerful tools for simplifying complex linear circuits 
into much simpler equivalent forms, regardless of frequency. This 



simplification makes analyzing the behavior of the circuit connected to a load 
much easier. At RF, the key difference is that the Thévenin impedance (ZTh ) 
and Norton admittance (YN ) are complex numbers, and the equivalent voltage 
(VTh ) and current (IN ) sources are represented as phasors. 

● Thévenin Equivalent Circuit: Any linear two-terminal circuit (no matter 
how complex, as long as it contains linear components and independent 
sources) can be replaced by an equivalent circuit consisting of a single 
voltage source, VTh , in series with a single impedance, ZTh . 

○ VTh  (Thévenin Voltage): This is the open-circuit voltage measured 
across the two terminals (A and B) of the original circuit. It's the 
voltage you'd measure if you disconnected any load from those 
terminals. 

○ ZTh  (Thévenin Impedance): This is the equivalent impedance seen 
looking into the two terminals (A and B) of the original circuit, 
with all independent voltage sources replaced by short circuits 
and all independent current sources replaced by open circuits. 
Any dependent sources must remain active during this 
calculation. 

● Norton Equivalent Circuit: Alternatively, any linear two-terminal circuit 
can be replaced by an equivalent circuit consisting of a single current 
source, IN , in parallel with a single admittance, YN  (or impedance, ZN ). 

○ IN  (Norton Current): This is the short-circuit current that flows 
between the two terminals (A and B) if they were directly shorted 
together. 

○ YN  (Norton Admittance): This is the equivalent admittance seen 
looking into the two terminals (A and B) of the original circuit, 
with all independent sources turned off (same as for ZTh ). 
YN =1/ZTh . 

Relationship between Thévenin and Norton Equivalents: These two equivalent 
circuits are interchangeable. You can convert between them using Ohm's Law 
for complex numbers: VTh =IN ZTh  IN =VTh /ZTh  ZTh =VTh /IN  (which is the 
impedance seen by the short-circuit current) 

Significance in RF: Thévenin and Norton equivalents are extremely useful in 
RF for: 

● Source Modeling: Representing a complex RF signal generator or 
antenna as a simple voltage source with its internal impedance. 

● Load Analysis: Simplifying the rest of a circuit so that you can easily 
analyze how a specific load component interacts with it. 

● Matching Network Design: The concept of source and load impedances 
derived from Thévenin/Norton equivalents is foundational to impedance 
matching. 



Numerical Example 1.4.1: Thévenin Equivalent Circuit at RF (Detailed) 

Consider the following circuit operating at 100 MHz. We want to find the 
Thévenin equivalent circuit looking into terminals A-B. 

Circuit Description: An AC voltage source Vs =10∠0∘ V (RMS) at 100 MHz is in 
series with a resistor Rs =50 Ohms and an inductor Ls =0.3 uH. This series 
combination is connected to terminals A-B. 

Given: Source voltage Vs =10∠0∘ V (RMS phasor) Source resistance Rs =50 
Ohms Source inductance Ls =0.3 uH=0.3×10−6 H Frequency f=100 
MHz=100×106 Hz 

Step 1: Calculate the angular frequency (ω): ω=2πf=2π×(100×106)=2π×108 
rad/s 

Step 2: Calculate the inductive reactance of Ls : 
XLs =ωLs =(2π×108)×(0.3×10−6)=2π×30=60π Ohms XLs ≈188.5 Ohms So, the 
impedance of the inductor is ZLs =j188.5 Ohms. 

Step 3: Find the Thévenin Voltage (VTh ): VTh  is the open-circuit voltage across 
terminals A-B. With nothing connected to A-B, no current flows through Rs  or 
Ls . Therefore, there are no voltage drops across them. The voltage at A-B is 
simply the source voltage. VTh =Vs =10∠0∘ V 

Step 4: Find the Thévenin Impedance (ZTh ): To find ZTh , we "turn off" all 
independent sources. In this case, replace the voltage source Vs  with a short 
circuit (0 V). Now, look into terminals A-B. The impedance seen is the series 
combination of Rs  and ZLs . ZTh =Rs +ZLs  ZTh =50+j188.5 Ohms 

Result: The Thévenin equivalent circuit for this setup is a voltage source of 
10∠0∘ V in series with an impedance of 50+j188.5 Ohms. This means that, 
from the perspective of any load connected to A-B, the original circuit behaves 
identically to this simplified Thévenin equivalent. 

Maximum power transfer theorem: 

The maximum power transfer theorem is a cornerstone principle in electrical 
engineering, particularly vital in RF and communication systems where 
efficient power delivery is paramount. It describes the condition under which a 
source (with internal impedance) delivers the maximum possible average 
power to a load. 

Statement of the Theorem: For an AC circuit, a source with an internal 
impedance Zsource =RS +jXS  will deliver maximum average power to a load 



impedance Zload =RL +jXL  when the load impedance is the complex conjugate 
of the source impedance. 

This condition means: 

1. Resistance Match: The resistive part of the load impedance must be 
equal to the resistive part of the source impedance: RL =RS . 

2. Reactance Cancellation: The reactive part of the load impedance must 
be equal in magnitude but opposite in sign to the reactive part of the 
source impedance: XL =−XS . 

Combining these, for maximum power transfer: Zload =Zsource∗  (where 
Zsource∗  denotes the complex conjugate of Zsource ) 

Why Complex Conjugate Matching? When XL =−XS , the reactive components 
of the source and load impedances cancel each other out: Total Reactance 
=XS +XL =XS +(−XS )=0 This leaves the total circuit impedance purely resistive: 
Ztotal =(RS +RL )+j(XS +XL )=(RS +RS )+j(0)=2RS  

With a purely resistive total impedance, the current in the circuit will be in 
phase with the voltage, ensuring that the maximum possible real power is 
delivered to the load. If there's any net reactance, some energy will be stored 
and returned to the source rather than fully delivered to the load. 

Importance in RF Systems: This theorem is fundamental to the design of 
virtually every RF system, from transmitters to receivers: 

● Antenna to Receiver Input: To maximize the signal captured by an 
antenna and transfer it to the sensitive input of a Low Noise Amplifier 
(LNA), the LNA's input impedance must be matched to the antenna's 
impedance (often 50 Ohms). 

● Inter-stage Matching: Between different stages of an RF circuit (e.g., 
LNA to mixer, mixer to IF amplifier), impedance matching networks are 
designed to ensure maximum power transfer, thereby minimizing signal 
loss and maximizing the signal-to-noise ratio. 

● Power Amplifier to Antenna: For transmitters, the power amplifier's 
output impedance must be matched to the antenna's input impedance to 
ensure that the maximum possible RF power is radiated efficiently into 
the air, rather than being reflected back to the amplifier where it could 
cause heating and damage. 

● Minimizing Reflections: When impedances are not matched, power is 
reflected back towards the source, leading to Standing Waves on 
transmission lines. These standing waves cause voltage and current 
peaks and valleys, which can lead to inefficient power transfer, 
increased losses, and potential damage to components (due to high 



voltage or current stresses). The measure of these reflections is the 
Voltage Standing Wave Ratio (VSWR), which will be discussed in detail 
in the Transmission Line module. Achieving complex conjugate 
matching ensures a VSWR of 1:1, representing perfect power transfer. 

Numerical Example 1.4.2: Maximum Power Transfer 

An RF source has an internal impedance Zsource =75+j30 Ohms. What load 
impedance Zload  should be connected to this source to ensure maximum 
power transfer? 

Given: Zsource =75+j30 Ohms Here, RS =75 Ohms and XS =30 Ohms. 

According to the maximum power transfer theorem, for maximum power 
delivery, the load impedance must be the complex conjugate of the source 
impedance: Zload =Zsource∗  

Zload =(75+j30)∗ Zload =75−j30 Ohms 

Interpretation: To deliver maximum power from this RF source, you would 
need to connect a load that has a resistance of 75 Ohms and a capacitive 
reactance of -30 Ohms. This capacitive reactance would cancel out the 
inductive reactance of the source, leaving a purely resistive path for the 
current and ensuring maximum power transfer. If the load were, for example, a 
resistive antenna, you would need to design an impedance matching network 
between the source and the antenna to transform the antenna's impedance to 
75−j30 Ohms. This will be a key topic in a later module. 
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